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ABSTRACT 7- Y % »Lg

The definition of the Sternheimer potential is generalized

to include wave functions which involve the spin. CZ}}Z;CJ’L)
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In his work on polarizabilities, shielding constants, and

. . 1 . ‘ 2 .
the like, Sternheimer  was led to introduce a local™ potential

: . * . -
associated with an arbitrary one-electron wave function Vufx)

according to
= | ]
(V-E) = - v <’ gf) (1)

Here T 1is the (one-electron) kinetic energy operator and E0
is defined by V>0 as ]x!-a ;i. With this definition

"
then 9/ satisfies the Schrodinger equation.

Ho = @ +v O ¥ = 5 & @

In recent years Sternheimer's definition has been taken
over uncritically in various formal discussions4 of perturbation
problems involving many-electron wave functions. In particular
little attention has been paid to the fact that the formula
(1), with T now the total kinetic energy operator, is
meaningless when applied to wave functions involving spin
since the reciprocal of a spin function is undefined.

In what follows we wish then to generalize (1) to wave
functions involving spin. We should also point out that
exhibiting Ho explicitly is of interest even in the rather
wide class of perturbation problems (see for example reference 4,
section IV) in which one can eliminate explicit mention of

H  from the equations provided \/ is _local since still,

1



one's E priori expectations as to the convergence of the
perturbation theory will be determined by the relationship
between the actual Hamiltonian and H0 (see also the first
reference of Footnote 5).

As the simplest case, suppose the spin part of ‘)U can be
factored: ‘7’/ = -F X , where x is the spin function. Then

the natural replacement for (1) 1is simply

(v-&) =~ '_J(;“Cr{) (3)

Even in this simple case, however, V may have unexpected
properties. In particular for N electrons it may be an
N-body potential. Thus, for example, consider the Slater

determinant
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Here one might expect that V isa one-body potential:

- -
V = ’V’(X. ) + V(X;) but, as one readily sees, unless Cp‘
and c/,_ are both eigenfunctions of the same local one-body

potential A , i.e. unless

._L. - —L- T(fz + constant
7 (T%) = (T%) _

V  will be a two-body potential.5




Now let us turn to the case in which Sp/ is not factorable.
Let us suppose for simplicity that it is an eigenfunction of total
spin, eigenvalue S , and of the Z-component of spin with eigenvalue

m . Then we can write

(//: Z {:o( X:)M

where the {Zx involve only spatial coordinates and where the
S)m
:X:a( are a set of orthogonal spin functions.

A natural extension of (3) is then to write

(\/-—Eo) = - Z‘ ':é"{(T'For) YTXS)M 4)

”m
)
where the ] Ja( are spin projection operators

< S, m S, ™
W«)Mxo()/ = X Sora’

We also define them to yield zero when acting on spin functions
having different total spin or Z-component. These last two
requirements are, of course, not necessary for our purposes
and in effect we drop them in (i) and (iii) below. However, it

allows a more systematic discussion since we can then express

sS,m )
;? in a general way as

¥ T
s, m S, m S, m
My = Xo( o



77::%AW1 can also, in any particular case, be written in terms
of electron spin operators.

With these definitions then it follows that (2) is satisfied.
However, the relatively simple definition (4) has certain
difficulties:

(i) It does not commute with the total spin vector
because the Z-direction has been singled out. This can be

remedied by replacing it by
s, m
(V-€)=-5+0Tt) 5 T,
« & m

With this defin}tion we clearly still have (2) and in additionm,
if the 77.3,/»4 for am #m are derived from 7T°S()M by the
appropriate spin raising and lowering operators, one readily
verifies that (\/“52) commutes with the total spin vector.
(ii) 1In general it is not symmetric in the particles.
This we remedy as follows: Since SP’ is antisymmetric and'jﬂ

symmetric it follows from (2) that

[T+ Pv-&)]%¥ =0

where P(\/"E;) is derived from(\/"Eo) by some permutation
of particle labels. Summing over F> and dividing by ﬁ/!
we get again an equation of the form (2) where now ( V-E, )

is the symmetric operator
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(iii) The one remaining obviously peculiar feature of
this definition of V"E° is that it yields zero identically
when applied to any wave function having total spin other than
S , expressing the fact that the extension to other spin is
quite arbitrary, and so we do not discuss it further.6

This is pretty much our final result save for two comments
below. We would stress its complicated structure even if W
is a single determinant (recall footnote 5.) In general,
although local it may well be an N-body, spin dependent-
potential. We close with three comments:

(iv) Suppose we had written

51X

s, m S, m
wher? the X.q,/ are related to the XQ{ by a real
(see (V) below) orthogonal transformation. It can be shown by
a simple example that following the same procedure but using
the primed quantities, will lead to a different V—é_° .
(v) So far we have not discussed the Hermitian properties
of V=E, . If the ‘F,( are real, (V - Eo) ‘as defined is

Hermitian. 1If we cannot choose the 'F.,( to be real this will

usually imply that the ‘Fq involve not only "internal



coordinates' but alsc have reference tc some fixed directions in
space, i.e. they involve 'external coordinates' (for example Euler
angles in the case of an atom) and are not invariant under the

relevant symmetry group (Rotations for an atom). For such cases

we can usually write
=g, 0
« = A oA A

where the ?;I’A are real functions of internal coordinates and
L, o«

the >/A ! are functions of the external coocrdinates, the L
and A designating a particular irreducible representation
of the symmetry group, and 4 denoting a particular member
of the irreducible basis (A, L, _# are exactly analogous to

e , § , ). Further one will usually have that

Ly~ ( INT )
-J“L/,T(%AX; ):: "L‘TA,L P4 (1)
where 7; L is an internal kinetic energy operator which may

p)

depend on A and L but not on // . After these remarks it

is clear that a Hermitian generalization of (5) is to replace

TFL(T 'f;,«) by

o

A Faa
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where we have introduced the sum on / in order to make our




potential invariant under the symmetry group.

Remarks analogous to (iii) and (iv) are applicable to this
definition.

(vi) This last potential is almost certainly not strictly
local. The net result of the external coordinate projection
operators will usually be to bring in angular momentum operators
and probably also integral operators. So for this case we have

not succeeded in attaining the original objective.
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FOOTNOTES

. R. Sternheimer, Phys. Rev: 96,:951 (1957). See also R. Makinson
and J. Turner, Proc. Phys. Soc. (London) A66, 857 (1953).

. A local potential is strictly speaking, one which involves
neither momentum operators nor integral operators though usually
only the latter restriction is implied.

In what follows we will not consider the definition of V and EO
separately. For the purposes of Schrodinger perturbation
theory only the combination of T + V - éf'o = Ho - E0 is needed.

. See for example. J. O. Hirschfelder, W. Byers Brown, and

S. T. Epstein, Recent Advances in Quantum Chemistry, vol. I
(Academic Press, New York, 1964).

On the other hand if we are dealing with a single Slater
determinant we can always find a one-body non-local potential:
such that (2) is satisfied. See S. T. Epstein, J. Chem. Phys.,
41, 1045 (1964), and G. C. Ghirardi and A. Rimini, J. Math.
Phys. 5, 722 (1964).

In the (unlikely) case that the 'ﬁ; are all degenerate
eigenfunctions, eigenvalue € , of the same symmetric potential
then our definition yields

(v-&) = (w-¢€) 02(;" me

Then the natural extension, of course, is to replace the double
sum, which is the projection operator for wave functions of
spin § , by the unit operator, and hence identify V with
W and £ with E



